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In this paper we provide strong mathematical support for the idea that the 
experimentally measured magnitude 1 - M~v/M~ associated with sin 2 0w in the 
standard model of electroweak interactions cannot be simultaneously identified 
with the squared quotient of the electric charge by the SU(2) charge, eZ/g -'. In 
fact, the natural, mathematical requirement that the Weinberg rotation between 
the gauge fields associated with the third component of the "weak isospin'" (T0 
and the hypercharge (Y) proceeds from a global Lie-group homomorphism of the 
SU(2) ® U(I )v gauge group in some locally isomorphic Lie group Iwhich then 
proves to be U(2)], and not from a local (Lie algebra) isomorphism, imposes 
strong restrictions so as to fix the single value e2/g 2 = I12. The two definitions 
of sin- 0w can only be identified in the asymptotic limit corresponding to an 
earlier stage of the universe before the spontaneous symmetry breaking had 
taken place. 

1. I N T R O D U C T I O N  

There  are two bas ic  ingredients  in the cons t i tu t ion  o f  a mode l  to descr ibe  
the unif ied  e l ec t roweak  interact ions,  the W e i n b e r g - S a l a m - G l a s h o w  s tandard  
model ,  which  dese rve  further  s tudy and which  lessen the (mathemat ica l )  
beauty  o f  the theory  as a whole.  One is the way  in which  the W-Z-bosons 
acquire  mass,  the Higgs  mechan i sm,  and the o ther  is the rotat ion be tween  
the gauge  f ie lds  A 3 and A~ assoc ia ted  with  the third c o m p o n e n t  o f  weak  

isospin T3 and the hypercharge  Y, 

Z ° = c O s 0 w A ~ -  s in0wA 4 (1) 

A~ = s i n 0 w A  3 + c O s 0 w A ~  
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intended to define the proper electromagnetic field, with a rather imprecise 
connection to the "weak" Gell 'Mann-Nishi j ima relation 

Q = T 3 + ~-Y (2) 

meant to define a proper electric charge in the Lie algebra. Furthermore, this 
rotation is presented in the literature in two conceptually different ways. In 
the first approach, the most conventional one, it is performed on the vector 
potentials in order to diagonalize the mass matrix resulting in the Lagrangian 
after the Higgs mechanism is applied. The corresponding rotation angle is 
directly related to a quotient between masses of intermediate vector bosons. 
This approach thus combines the two above-mentioned negative ingredients 
of the theory. 

However, there is a second approach which is previous to any mechanism 
intended to supply mass to the vectorial bosons of the theory. Now the 
transformation (1) is a consequence of (dual to) a transformation on the Lie 
algebra generators involving T3 and Y providing an electric charge through 
relation (2) and its counterpart which defines the neutral weak charge associ- 
ated with Z °. It must be a rotation in order to keep the canonical independence 
of the gauge fields (Bernstein, 1974). The corresponding angle is directly 
related to the quotient between new and old coupling constants e2/g 2. 

The conceptual difference between the two characterizations of the mix- 
ing angle, as a quotient of masses and a quotient of charges, was first pointed 
out by Passarino and Veltman (1990). In the present paper we shall prove 
that there are strong mathematical restrictions on the quotient e2/g z so as to 
fix the single value II2, which demonstrates that this magnitude cannot be 
directly related to the quantity 1 - M~v/M~ considered in the standard model 
as a parameter which has to be determined by experiment. 

From now on we shall follow the second approach to the characterization 
of the mixing angle, according to which sin 2 0w will appear as a function of 
coupling constants. 

As a preliminary comment to motivate the following formal presentation, 
we stress that the mere embedding of the electromagnetic subgroup U(I)o 
in the torus T 2 = U(1)T~ ~ U(I)~,, as suggested by (2), imposes nontrivial 
restrictions (rational values) on the tangent of the closed geodesics associated 
with its generator. Then the additional requirement that U(1)r_~ be a subgroup 
of SU(2) will impose further severe restrictions. 

2. G E N E R A L  ANALYSIS 

Let us start by exploring the restrictions that appear on the mixing angle 
as a consequence of the natural consistency requirement that the rotation in 
the gauge fields (1) comes from an exponentiable automorphism on the Lie 
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algebra of SU(2) ® U(1)r. Since the gauge group is not simply connected, 
it is not true that any automorphism of the Lie algebra can be realized as 
the derivative of a global group homomorphism (see, e.g., Chevalley, 1946), 
or, in other words, a differentiable mapping between two locally isomorphic 
groups providing a given automorphism of the (common) Lie algebra can in 
general destroy the global group law. Thus it is the specific topologic structure 
of the starting group SU(2) ® U(l)v which restricts the number of globally 
exponentiable transformations in the corresponding Lie algebra. 

Disregarding the global structure of the gauge group could affect some 
important aspects of the theory, such as (a) the existence or not of monopoles 
and solitons (see, e.g., Arafune e t  al . ,  1975; Hon-Mo and Tsun, 1993), (b) 
the topological properties of the symmetry breaking (see, e.g., Isham, 1981), 
or (c) the Bohm-Aharonov effect itself (see, e.g., Aharonov and Bohm, 
1959), in short, aspects which have something to do with the topology of 
the gauge group. 

To analyze the set of global homomorphisms from SU(2) ® U(1)v to 
locally isomorphic groups we can proceed in two different ways: either we 
study the set of discrete normal subgroups of SU(2) ® U(1)r, which are the 
possible kernels of those homomorphisms, or we start from the explicit group 
law of SU(2) ® U( 1)v, write the expression of all homomorphisms involving 
only the toral subgroup T 2 = U(l)r3 x U(l)r, and analyze the conditions 
under which the group law of the entire group is not destroyed. We shall 
follow the second approach, although we add some comments on the first 
one at the end. 

Let us parametrize the group SU(2) in a coordinate system adapted to the 
Hopf fibration SU(2) --~ S 2, the sphere S z being parametrized by stereographic 
projection. The SU(2) ® U(l)r group law in the local chart at the identity, 
which nevertheless keeps the global character of the toral subgroup, is 

z'~ ~q ' ~l - "q ' ~o*C' C* 
~ H _ _  _ _  _ _  

IZ';I [(1 -- "q*2C'C*)(l -- "q2CC*')]1/2 

67' z" C~ 2 + C' 
- - ( 3 )  

z7 ~q2 _ C '  C*  

C*" - z~* _ C*r1-2 + C*' 
z'~* ~q-2 _ C * ' C  

~-= ~'~ 

where rl E U(1)r3 
SU(2) matrix 

C SU(2), ~ ~ U(I)r, C ~ C, and zl, z2 characterize an 

Z~ Z2) 
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The commutation relations between the (right) generators T+ - X c . ,  T_  - 
X c ,  7"3 - X~, and Y --= X~ are 

IT 3, T._] = +-2T+_ 

[T+, T_] = 7"3 (4) 

[Y, all] = 0 

We shall consider transformations F: SU(2) ® U(I)y ~ G, where G is 
a group locally isomorphic to SU(2) ® U(I)y to be determined, induced by 
all homomorphisms of the toms: 

= rpi;/" 

= "l~q~ q' (5) 

C = C, C* = C* 

where the parameters p, p ' ,  q, q' have to be integers for the univaluedness 
requirement [although these transformations exhaust all possibilities of 
obtaining (1), it can be proven that they really exhaust all possible homomor- 
phisms (which locally are isomorphisms) on SU(2) ® U(1)y]. 

After we apply this transformation the group law becomes 

"r'l" = ( i( l  (~,)lZp~l/O _ (~.l,),/p~-~a+2qe'~/at,~2pVa(2.~., ~P 
_ 1 _ ] 

¢12q'1"~ - 2¢k~ - C' C* (6) 

C @" = ~*,~-2q'la~2p'" 4- C@' 
,~-2q'ld~2p'la _ e * '  C 

where d is the determinant of the matrix 

and this group law is well-behaved (univalued) if 

2p '  = m, 2q' = n, -q = k, m, n, k ~ Z (7) 
d d p 

which, in particular, implies p = +_1, +_2. These particular values simply 
state the well-known fact that the only invariant subgroups of SU(2) itself 
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are I (the identity) and Z2, respectively, the last one corresponding to the 
standard homomorphism SU(2) ~ SO(3). 

The commutation relations between the new generators (with a definition 
analogous to that given above), 

[1r'3, iV._] = +2q'_ /L- 
d - 

[17, ~/.+] = +_-2p '  ~/.+ (8) 
d - 

[T+, 7"-] = P7"3 + q17 

can be obtained directly from (6) or by applying the tangent mapping to F, 
(5), to the old ones. This transformation gives 

q' q 
T'3 : - - ~ - T 3 - ~ t Y  

_ p t  
17 = - - ~  7"3 + p Y (9) 

and provides a generalized Gell 'Mann-Nishij ima relation and its counterpart, 
which now appear quantized. 

Let us now examine the transformation induced by (5) in the (third - 
fourth internal components of  the) gauge fields. It is given by 

(A-~'~ (1/~ 0 ) ( p  p'~{r  O~{A3~ 
a 4} = 0 1/?' q'}~O r }~a~) (10) 

where r, r' are the original coupling constants associated with weak isospin 
and hypercharge, respectively, and ?, ?' are the final ones. In fact, the covariant 
derivative D~ = 0w - ig~TkA~, where i, k run over 1, 2, 3, 4 (T4 ------ Y), goes 
to LS~ = 0~ - i~iiT"kmi~ : D w Therefore, 

- - , , i  = (g )jakgiA ~ (11) 

where a-~ is the transformation matrix changing coordinates in the Lie algebra 
[dual to (9)], which contains the central matrix in (10) as a box, and g = 
diag(r, r, r, r') and ~ = diag(~, ?, ?, ~') are the initial and final (bare) coupling 
constant matrices. 

We now impose the requirement that the complete transformation (10) 
be the Weinberg rotation (1) (Z ° -3 ---- A~, A~ -- ,~4). This results in 

~2 pp, r 2 q,p, 
- , - , tan 2 0 W -  qP' P -  P ~  r 

?,2 qq, r,2 qp pq' ' cos 0w 
(12) 
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which contain a further restriction: the product of the four integers pp'qq' 
< 0, a condition afterward necessary to have a (true) rotation. Unfortunately, 
only the rotations 0w -- 0, ,rr/2 correspond to automorphisms of the torus (d 
-- _+1, i.e., without kernel) but they result only in either the identity or 
interchange of gauge fields. Therefore, nontrivial rotations require I dl 4= l, 
which means that the transformation F must be a homomorphism having a 
nontrivial, discrete kernel H = ker F, going from SU(2) ® U(1)r onto SU(2) 
® U(1)r/H. Adding (12) to (7), we arrive at the result 

{p = _ l  and (p' = - k q ' ,  k = _ l )}  ~ {tan 2 0w = l, d = +_2q'} 
(13) 

For these values of p, p ' ,  q, q' the kernel of the homomorphism [see the 
transformation (5)] is the normal subgroup H -- lid: 

H a = ~'(C, C*, "q; ~) = (0, 0, 1; ei(2s/d) 2~r), 
L 

(0, O, - 1; eiVZ~+l)/dl2~r)[S = O, 1 . . . . .  - -  - Id12 1} (14) 

which is isomorphic, as a group, to Z i d  I . All these homomorphisms lead to 
the same value for tan 2 0w (= 1) and, in fact, all can be written as 

(: :)(o' o) 
where the second factor has determinant ±q '  and represents a transformation 
from SU(2) ® U( 1)r to SU(2) ® (U( 1 )r/Z q' t), and the first one has determinant 
2 and would take SU(2) ® U(1)r to (SU(2) ® U(I)r)/H2 ~- U(2) by itself. 
The second factor affects the quotient between the original coupling constants 
(not the final one), as can be seen in (12), and the generalized Gel l 'Mann-  
Nishijima relation (9). Among the possible values for q', only q' = _1 
provides us with a proper electric charge; the choice of the signs of p, q, p '  
is a matter of convention and will define either 7" 3 or IF' as - the electric 
charge Q. The corresponding homomorphism has Ker HE = {(0, 0, 1; 1), (0, 
O, --1; --1)} and U(2) as the image group (true gauge group) (Isham, 1981; 
O'Raifeartaigh, 1986; LaChapelle, 1994). 

3. DISCUSSIONS 

Summarizing, the only global homomorphism (except for a trivial sign 
ambiguity) from SU(2) ® Ur(1) to a locally isomorphic group defining a 
proper rotation on the gauge fields compatible with the Gell 'Mann-Nishij ima 
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relation (thus providing an electric charge) is the homomorphism SU(2) ® 
Uv(l) ~ U(2), which leads to the value tan 2 0w = 1 for the mixing angle. 

With the usual choice of multiplets in the Lagrangian of the standard 
model (see, e.g., Ryder, 1985) T3 and Y have the expressions 

/'.3 = - 1  , Y = 1 (16) 
0 0 

which agree with the usual expressions if the U(1) subgroups are trivially 
reparametrized by c~ = - 2 i  In "q, [3 = i In ~ (T3 --~ ~T3, Y--> -Y).  The 
particular choice of signs p = p '  = q' = - q  = - 1 yields 

(i o o ) ( : o o )  
Q =  f ' =  - 1  0 , T3 = 0 0 (17) 

0 - 1  0 - 1  

The first surprising result is the fact that only one value of tan 2 0w 
is allowed, which means only one coupling constant (the electric charge, 
essentially, i.e., e - F = , f2r  =- g l ,~ ) ,  even though the gauge group [U(2)I 
is not a simple group. According to general settings (ltzykson and Zuber, 
1985), however, the theory must contain a coupling constant for each simple 
or Abelian term in the Lie algebra decomposition. An immediate conclusion 
is that the assignment of constants should be done according to factors in 
the direct product decomposition of the group, rather than the algebra. 

The second result is the particular structure of  the neutral weak current 
derived from the expression of T3 above, according to which the gauge field 
Z ° interacts with the (Heft-handed) neutrino and the right-handed electron 
only; i.e., the neutral weak current is pure V - A  for the neutrino and pure 
V + A  for the electron. 

Last, but not least, is the striking value of  e21g 2 = 1/2, far from the 
2 '~ experimental value of 1 - M~vlM~ ~ 0.23 (Aguilar-Benitez et al., 1994). In 

the light of this result, only the hope remains that our theoretical characteriza- 
tion of 0w really corresponds to that state of  the universe in which the 
electroweak interaction was not yet "'spontaneously broken," i.e., the masses 
of the vector bosons are zero and therefore the quantity 1 - MfvIM2 makes 
no physical sense. In any case, our results provide strong support for the 

9 2 ~ idea that the magnitude 1 - M~,IMz cannot be directly identified with e'/g-. 
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